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Abstract: Recent advances in conversational AI present new opportunities for language learn-
ing, yet current systems fail to integrate established second language acquisition (SLA) princi-
ples. This thesis addresses this gap by designing and implementing a multi-agent conversational
AI system that combines authentic dialogue practice with evidence-based SLA methods, par-
ticularly spaced repetition. The system uses specialized agents to integrate SLA principles for
vocabulary tracking, scheduled review, and authentic conversation. A pilot study using a modi-
fied experimental system compared this approach against traditional flashcard learning, assessing
vocabulary recall and learner motivation. Results found comparable learning outcomes between
conditions (conversational: 62.7%; flashcard: 70.9%; p = .281, r = 0.357) with small-to-moderate
effect sizes for the conversational system in attention and satisfaction (r ≈ 0.40) metrics. This
work provides a working technical foundation for adaptive conversational learning systems and
initial empirical insights into their educational potential.

1 Introduction

Research shows that incidental vocabulary acqui-
sition through conversation can be 1.7 to 12 times
more efficient per minute than direct instruction,
indicating the potential of AI-powered conversa-
tional learning systems (McQuillan, 2019). This ef-
ficiency may come from social interaction, as re-
search suggests meaning negotiation creates effec-
tive encoding conditions for long-term memory for-
mation (Bitchener, 2004).
However, existing implementations fail to cap-

ture this potential because they lack the theoretical
frameworks and goal-directed architectures needed
to optimize vocabulary introduction, track learner
progress, and implement evidence-based retention
strategies (Belda-Medina & Calvo-Ferrer, 2022; Du
& Daniel, 2024). While conversational practice pro-
vides the most natural environment for develop-
ing vocabulary knowledge, existing chatbots oper-
ate reactively rather than pedagogically. This pre-
vents them from systematically targeting vocabu-
lary or pursuing learning goals, creating an “adap-
tivity gap” between technical capability and educa-

tional effectiveness (Bibauw et al., 2022). Current
systems cannot track individual learning progress
or guide vocabulary toward specific goals.

Bridging this gap is important for two rea-
sons. First, usage-based theories suggest that con-
versational systems offer unique learning advan-
tages through social entrenchment. Schmid’s En-
trenchment and Conventionalization (EC)-Model
proposes that linguistic knowledge is “continu-
ously refreshed and reorganized under the influence
of social interactions” (Schmid, 2017). From this
perspective, entrenchment through communicative
events may contribute to more robust memory for-
mation than isolated study (Schmid, 2020). Second,
evidence-based retention strategies could dramati-
cally improve outcomes. Implementing spaced rep-
etition algorithms can improve vocabulary recall by
29 percentage points (Belardi et al., 2021), yet this
powerful technique remains untapped in conversa-
tional systems. To date, no peer-reviewed evalua-
tions have been published of systems that integrate
natural conversation with learner-specific vocabu-
lary tracking and scheduled review, leaving these
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complementary advantages uncombined.

While entrenchment theory motivates the con-
versational approach, building effective vocabulary
learning systems requires integrating multiple theo-
retical frameworks that address specific design chal-
lenges.

Theoretical foundations. CALL research
shows that “coherent combinations of theories, or
theory ensembles” are needed to accommodate
the intersection of SLA, technology, and other
disciplines (Hubbard & Levy, 2016). Four theories
specifically address the design challenges of build-
ing pedagogically effective conversational systems,
each informing key architectural decisions.

The New Theory of Disuse (Bjork & Bjork, 1992)
reveals why neither conversation alone nor tradi-
tional methods alone is sufficient. The theory dis-
tinguishes storage strength (how well something is
learned) from retrieval strength (how easily it can
be recalled right now). When a word is learned,
both increase, but retrieval strength fades quickly
without practice while storage strength persists.
This distinction exposes complementary limitations
in existing approaches. Flashcard methods excel at
building storage strength through systematic spac-
ing, but they cannot develop retrieval pathways for
spontaneous vocabulary use in authentic commu-
nication. Conversely, conversation develops these
retrieval pathways through active use, but with-
out systematic spacing it fails to optimize stor-
age strength. An effective system must integrate
both: spaced repetition algorithms to build storage
strength, and conversational practice to develop re-
trieval pathways and procedural fluency necessary
for spontaneous communication.

Skill Acquisition Theory (DeKeyser, 2007) ex-
plains why vocabulary learning requires different
approaches at different stages. The theory describes
progression from declarative knowledge (knowing
meanings) through procedural knowledge (effort-
ful use) to automatic fluency (unconscious applica-
tion). This progression directly informs system ar-
chitecture: newly introduced vocabulary needs ex-
plicit presentation with clear definitions and exam-
ples, while previously learned words require varied
conversational practice to develop procedural flu-
ency. Only extensive authentic speaking practice
achieves the automatization necessary for real com-

munication. This staged approach reflects Nation’s
distinction between vocabulary knowledge types,
from form-meaning recognition to productive use
(Nation, 2013).

The Interaction and Noticing hypotheses to-
gether inform authentic conversation design. The
Interaction Hypothesis (Long, 1996) specifies that
acquisition occurs through meaning negotiation
in genuine communicative contexts, requiring au-
thentic information gaps rather than scripted ex-
changes. Long’s foundational work establishes that
social interaction through meaning negotiation not
only facilitates language acquisition but also cre-
ates superior encoding conditions for long-term
memory formation. Research building on this the-
ory has demonstrated that learners engaged in ne-
gotiation of meaning show significant advantages
for both short-term and long-term memory com-
pared to those in non-interactive conditions (Bitch-
ener, 2004). The Noticing Hypothesis (Schmidt,
1990) complements this by establishing that con-
scious attention to vocabulary is necessary; words
that pass unnoticed cannot be learned. Together,
these theories justify systems that balance authen-
tic conversation with deliberate vocabulary expo-
sure, introducing words explicitly then using them
in meaningful dialogue.

Together, these perspectives motivate a set of
design considerations for vocabulary learning sys-
tems: tracking progression through skill stages
(declarative to automatic), supporting conscious
attention to target vocabulary, enabling authentic
meaning negotiation in goal-oriented dialogue, and
balancing storage and retrieval processes through
strategic timing. The following section shows how
these requirements can be addressed through sys-
tem design.

Proposed approach. This study presents a
multi-agent architecture designed to address the
adaptivity gap by distributing the ensemble of theo-
retical requirements across specialized components,
enabling natural conversation alongside systematic
vocabulary tracking. To establish a baseline for
measuring these architectural innovations, a pre-
liminary experiment was conducted comparing the
system against traditional flashcards. Flashcards
serve as the established standard for declarative vo-
cabulary testing, efficiently training word-meaning
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associations (Nation, 2013; Teymouri, 2024).

Research Question. How does vocabulary
learning through multi-agent conversational
practice compare to traditional flashcards in
terms of immediate recall performance and
learner motivation within a single-session ex-
periment?
To answer this question, the system was devel-

oped in two versions:

1. A primary version using Neo4j (a graph
database) knowledge graphs for vocabulary
representation with spaced repetition schedul-
ing based on forgetting curves, incorporating
spacing intervals validated by Belardi et al.
(2021).

2. An experimental version for controlled test-
ing, using simplified CSV-based storage and
priority scheduling to fit experimental time
constraints.

The primary version requires weeks of testing to
validate storage strength development. This study
therefore uses an experimental adaptation that can
test the core architectural elements within a single
session: multi-agent coordination, systematic vo-
cabulary selection, skill stage differentiation, and
the attentional and motivational effects of conver-
sational practice. While this single session cannot
validate long-term memory entrenchment, it fits ex-
perimental constraints while maintaining the abil-
ity to evaluate the multi-agent approach.
The experiment compared the conversational

system and flashcard practice for C2-level English
vocabulary acquisition. Using a within-subjects de-
sign, both recall performance and intrinsic motiva-
tion (RIMMS scale) were measured and analyzed
using non-parametric statistical tests to test for
differences and generate hypotheses for future re-
search (Loorbach et al., 2015).
Contributions of this study include:

1. Technical implementation: A working im-
plementation of a multi-agent conversational
vocabulary learning system that demonstrates
how theoretical requirements can be addressed
through distributed architecture.

2. Preliminary empirical insights: Initial ev-
idence about performance patterns and mo-

tivational differences between conversational
and traditional learning methods, establishing
a methodological foundation for future con-
trolled studies.

2 System Design

Building upon the theoretical requirements estab-
lished in Section 1, this section presents the multi-
agent architecture designed to address the adaptiv-
ity gap in conversational vocabulary learning. The
section first describes the primary implementation
designed for long-term deployment, then presents
the experimental adaptation used in the pilot study
(Section 2.6).

2.1 Architecture Overview

The system employs a multi-agent architecture
comprising three specialized components: a con-
versation agent maintains natural dialogue flow,
a language processor analyzes learner utterances,
and a supervisor generates learning objectives. This
specialization addresses performance degradation
when single LLMs handle multiple complex tasks
(Liu et al., 2024). Each component optimizes its
primary function while maintaining coordinated
system behavior. Detailed component descriptions
follow in Section 2.3.

These components operate concurrently to pre-
serve conversational flow, preparing learning goals
and updating knowledge representations in the
background. The conversation agent handles all
user interaction, while the supervisor provides
learning goals and the processor updates vocabu-
lary knowledge in the background.

This division of responsibilities is especially im-
portant when implementing learning theories that
create competing teaching demands.

2.2 Theoretical Connection

The four theoretical frameworks create implemen-
tation challenges that single-system architectures
struggle to address simultaneously. Natural con-
versation flow (Interaction Hypothesis) can com-
pete with explicit vocabulary attention (Noticing
Hypothesis) for system focus; optimal spacing in-
tervals (New Theory of Disuse) can interrupt con-
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Figure 2.1: Multi-agent architecture with three
core components operating concurrently. STT
= speech-to-text.

versational practice needed for skill development
(Skill Acquisition Theory). The multi-agent ap-
proach distributes these challenges across special-
ized components.
Each agent specializes while coordinating

through shared knowledge: the conversation agent
maintains dialogue flow and procedural practice;
the supervisor orchestrates vocabulary selection,
spacing, and noticing conditions; the language pro-
cessor tracks skill development and performance
indicators. The graph database integrates these
observations, maintaining relationships between
vocabulary, learning stages, and performance
history. This allows each component to optimize
its function without compromising others; con-
versation continues uninterrupted while learning
decisions happen asynchronously.
Realizing this architecture requires technical in-

frastructure supporting real-time voice conversa-
tion and multi-agent coordination.

2.3 Core Components

Real-time Conversation Agent As the agent
that users interact with directly, this component
requires careful behavioral design to maintain au-

thentic dialogue while providing procedural prac-
tice opportunities. The agent operates with exten-
sive instructions that specify behaviors including
error correction, goal-oriented conversation steer-
ing, and seamless integration with target vocab-
ulary. These instructions emphasize sustained en-
gagement across multiple sessions, balancing nat-
ural conversational flow with learning objectives.
The complete instruction set is available in the
source code repository (see Appendix A). The agent
follows a goal-completion cycle: it receives learn-
ing objectives from the supervisor, integrates tar-
get vocabulary into conversation naturally, accom-
plishes these objectives, then requests new goals
when ready. This maintains uninterrupted learning
momentum while preserving conversational flow.
Because complex reasoning is handled by the su-
pervisor, this interface can operate effectively us-
ing a smaller, faster model, which also provides
significant cost advantages. The Real-time Conver-
sation Agent uses gpt-4o-mini-realtime through a
WebSocket-based connection for ultra-low latency
(1/20th the cost per minute of gpt-4o-realtime)
with minimal performance loss. This separation
reduces API costs from approximately $50 to $3
per hour of conversation while maintaining con-
versational quality, using the more powerful model
only for intermittent planning tasks. OpenAI inde-
pendently adopted this separation pattern in June
2025, validating the cost optimization approach.

Language Tutor Supervisor This supervisor
addresses the adaptivity gap by tracking learner
knowledge and adjusting content accordingly. It im-
plements storage/retrieval optimization, grammat-
ical pattern targeting, and skill progression man-
agement, generating comprehensive learning ob-
jectives that include vocabulary, grammar prac-
tice, and skill development based on individual
progress. Operating with gpt-4o for superior rea-
soning, the supervisor processes recent conversation
and database info without real-time constraints, ac-
tivating only when new objectives are needed. This
selective activation minimizes costs while preserv-
ing advanced decision-making for critical teaching
moments.

When the conversation agent requests new goals,
the supervisor analyzes context, generates tailored
Cypher queries for the Neo4j database, retrieves
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relevant information (words due for review, gram-
matical patterns needing practice, appropriate new
vocabulary), then synthesizes this data into action-
able objectives like “naturally use: obfuscate, capit-
ulate, pragmatic.” The workflow introduces a one-
second pause, providing intelligent direction with-
out disrupting dialogue flow.

Language Processor Operating as a silent over-
seer, this processor maintains database currency by
piggybacking on the user-side conversation tran-
script from the Real-time Conversation Agent and
transforming it into structured learning data. It
analyzes all user utterances, identifying grammat-
ical features and correctness for each word, then
outputs findings in database-compatible JSON
schema. This passive observation enables compre-
hensive linguistic analysis without disrupting con-
versation; the processor influences learning only in-
directly through database updates that inform fu-
ture supervisor decisions.

2.4 Knowledge Graph and Memory
System

Graph Structure Neo4j was selected to model
vocabulary learning’s complex relational structure:
words connect to multiple grammatical forms, each
with distinct performance histories and spacing
schedules. Graph databases excel at this intercon-
nected data, where queries like “words where user
struggles with genitive case” require simple traver-
sals but would need complex SQL Joins in tradi-
tional databases.

The structure models vocabulary learning
through interconnected nodes: Lexeme nodes
represent vocabulary items, connecting to
GrammarContext nodes via USES GRAMMAR relation-
ships. Grammar contexts link to morphological
features (HAS CASE, HAS TENSE, HAS NUMBER),
enabling form-specific performance tracking, dis-
tinguishing, for example, nominative mastery from
genitive difficulty within the same word.

The core learning data resides in
LearningProgress nodes, which connect users
to vocabulary items through the relationship
path: User-HAS PROGRESS-LearningProgress-
ABOUT-Lexeme. These nodes unify spaced
repetition scheduling with performance analytics.

Learning Progress Integration Each
LearningProgress node contains:

• Scheduling data: SRS level (1-5 Leitner box
system), next review date, last interaction
timestamp

• Performance metrics: Overall success rates,
form-specific statistics (JSON), weakest forms
array, cumulative encounter/success counts

The Leitner box system was selected over ad-
vanced algorithms like SM-2 and half-life regres-
sion due to conversational constraints. These algo-
rithms require detailed self-reported difficulty rat-
ings to achieve their claimed accuracy. Initial at-
tempts to estimate these ratings by having an LLM
analyze conversational interactions proved inaccu-
rate, while explicitly asking users for ratings would
interrupt conversation flow. This left binary suc-
cess/failure classification as the only viable ap-
proach. The Leitner box system is well-suited to
this constraint and validated by studies showing
significant vocabulary gains (Davatgar & Ghorban-
zadeh, 2013), providing adequate functionality for
architecture validation.

The adaptive mechanism uses exponential spac-
ing intervals (1, 2, 4, 8, 16 days) that expand
as proficiency increases: struggling words return
to shorter intervals through SRS reduction, while
mastered items advance to longer review periods.
This system operationalizes the New Theory of
Disuse (Bjork & Bjork, 1992) by distinguishing
storage strength from retrieval strength. Storage
strength builds through cumulative encounters and
SRS progression, while retrieval strength is en-
hanced through the Neo4j graph structure that en-
ables traversal across related grammatical forms
and contextual connections. The system classifies
each interaction as accurate usage, morphological
error, or retrieval failure, then continuously updates
both strength metrics to inform scheduling deci-
sions.

2.5 Technical Foundation

The system builds on OpenAI’s Swarm frame-
work for its real-time voice capabilities, which pro-
vide pre-built WebSocket infrastructure for audio
streaming, interruption detection, and turn man-
agement. Building this infrastructure from scratch
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would require complex state synchronization and
audio buffer handling, making Swarm the optimal
choice for rapid development.

Swarm’s function calling capabilities enable
agents to execute predefined code functions dur-
ing conversation without breaking dialogue flow.
In this architecture, function calls serve as the pri-
mary mechanism for the conversation agent to re-
quest new learning goals from external systems.
The framework also provides agent handoff capa-
bilities that enable different agents to control the
conversation at different times, a feature utilized in
the experimental adaptation (Section 2.6).

However, the primary architecture required par-
allel processing capabilities that Swarm was not
designed to support. The framework assumes se-
quential control: one agent handles the conver-
sation, then passes complete control to another.
To implement parallel operation, the system uses
shared context windows and context routing be-
tween agents, with separate processing threads en-
abling asynchronous processing. This allows the
conversation agent to maintain real-time dialogue
while the supervisor and processor work in parallel,
accessing shared conversation context as needed.
Modifying Swarm’s backend to support simultane-
ous operation of three agents working on the same
conversation stream was challenging but necessary,
representing the optimal trade-off between devel-
opment speed and architectural requirements.

2.6 Experimental Adaptation

The preceding sections described the primary im-
plementation designed for long-term deployment
with weeks of interaction. However, as noted in
Section 1, this study also developed an experimen-
tal version to enable controlled single-session test-
ing. While the primary version demonstrates full
theoretical implementation, controlled experimen-
tal validation required architectural adaptation to
fit single-session experiment constraints. Preserv-
ing multi-agent coordination and theoretical prin-
ciples within experimental logistics (35-minute ses-
sions, pretest integration, block-based design, and
avoiding Neo4j database setup for each participant)
required simplified but functionally equivalent im-
plementations.

Two-Agent Handoff System To better tar-
get skill acquisition stages within the short experi-
mental window, the Real-time Conversation Agent
is replaced by two specialized voice agents that
make use of OpenAI Swarm’s handoff capability
(Figure 2.2). This approach directly implements
DeKeyser’s Skill Acquisition Theory (DeKeyser,
2007), dividing vocabulary learning between declar-
ative and procedural phases for more precise target-
ing within the 35-minute constraints.

The IntroducerAgent specializes in the declar-
ative stage, presenting definitions and contextual
examples to establish explicit knowledge. The Re-
viewAgent focuses on procedural development and
entrenchment, practicing words in varied conversa-
tional contexts. Complete instruction sets for both
agents are available in the source code repository
(see Appendix A).

This architectural separation prevents instruc-
tion dilution across DeKeyser stages and provides
natural learning queue management. Similar to how
flashcard users control their acquisition pace, the
two-agent system creates a more structured ap-
proach to vocabulary introduction and review tim-
ing.

Introducer
Agent

Review
Agent

CSV
Storage

User Speech

Language
Processor

STT

new words

review

handoff

get new

get least
reviewed

update usage
statistics

Figure 2.2: Experimental two-agent handoff sys-
tem implementing DeKeyser’s skill acquisition
stages. Introducer and Review agents are spe-
cialized versions of core components (see Sec-
tion 2.3). Verbal commands trigger transitions
between modes.
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Interaction Design While the primary archi-
tecture emphasizes sustained engagement for long-
term use, the experimental timeframe required
intensifying these engagement principles into a
high-throughput “personal trainer” style: maxi-
mum speed, energetic delivery, and focused interac-
tion. This intensification addresses throughput con-
straints: with 10 words to learn across two 6-minute
blocks (12 minutes total per condition), the system
required exceptional learning efficiency to compete
with flashcard methods on declarative assessments.
Flashcards purely train declarative memory with-
out conversational overhead, making timing a crit-
ical constraint for conversational approaches that
naturally introduce inefficiencies. The focused, di-
rective interaction style prevents time loss to un-
necessary conversation, maintaining the pace nec-
essary to achieve comparable declarative learning
outcomes.

The decision to place handoff control with par-
ticipants addressed experimental constraints: with
6-minute blocks and no learner models, participants
could better assess their cognitive load than an
automated system. Learners progressed at differ-
ent speeds: some needed more declarative introduc-
tion, others benefited from rapid procedural prac-
tice. The verbal commands “I want new words” or
“I want to review words” triggered handoff, allow-
ing self-regulation and preventing frustration from
being overwhelmed or reviewing mastered words.
This design was crucial since without weeks of in-
teraction data, the system relied on participants’
metacognitive awareness for optimization within
brief sessions. The agent separation ensured fo-
cused declarative learning while review efficiently
practiced multiple words for procedural develop-
ment.

The user-controlled design also offered motiva-
tional benefits. According to Self-Determination
Theory, autonomy is one of three core psycholog-
ical needs that drive human motivation (Ryan &
Deci, 2000). When learners control when to intro-
duce new words versus practice familiar ones, they
feel more invested in the process. Instead of sim-
ply following a prescribed sequence, participants
actively shape their learning path. This sense of
collaboration and ownership may enhance engage-
ment, as learners feel they are working with the
system rather than being directed by it.

Simplified Coordination Instead of Neo4j
graph databases and complex spacing algorithms,
the experimental system used CSV files with
priority-based scheduling. The Language Tutor Su-
pervisor’s complex database queries were replaced
by simple tool calls that execute Python scripts to
pull words from priority queues. When agents re-
quested new words or review words, getNewWords
or getReviewWords tool calls ran scripts selecting
vocabulary based on priority: recently introduced
words with lowest user frequency received prior-
ity for review, while unseen words were prioritized
for introduction. The Language Processor contin-
ued analyzing conversations but generated CSV up-
dates tracking usage statistics. This simplified ap-
proach eliminated the need for complex Cypher
queries while maintaining systematic vocabulary
selection within the 6-minute blocks, acknowledg-
ing that spaced repetition optimally requires weeks
to demonstrate effectiveness.

3 Methods

3.1 Overview

This study employed a within-subjects design com-
paring memory-augmented conversational agents
with traditional flashcard learning for vocabulary
acquisition. Word recall performance and learner
motivation were assessed using the reduced In-
structional Materials Motivation Survey (RIMMS)
(Loorbach et al., 2015). The experimental adapta-
tion (Section 2.6) enabled single-session evaluation
of the system.

3.2 Experimental Design

We employed a counterbalanced within-subjects
design with two conditions:

• Condition A (CONV): Interaction with the
conversational agent system using the exper-
imental implementation, includes live tran-
scription of conversation on display

• Condition B (Control): Traditional flash-
card learning within a customWebUI with def-
initions and 1-2 contextual examples per word.
Participants can choose next word or to restart
from the start of the list, so users can actively
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choose to review words or learn new ones. (see
Appendix C for flashcard interface)

Participants learned 20 words (10 per condition)
across four 6-minute blocks with 30-second breaks.
Counterbalancing used ABAB/BABA order based
on participant number (odd: ABAB; even: BABA).
The 6-minute duration enabled four blocks plus as-
sessments within 35 minutes, balancing exposure
with practical constraints. RIMMS assessments fol-
lowed blocks three and four to optimize memory
spacing and minimize survey fatigue. The ABAB
structure introduced 6-8 minute forgetting inter-
vals between exposures to each condition, allowing
assessment of relearning after brief delays.

3.3 Participants

Twelve university students (18-26 years, C1-C2
English proficiency, non-native speakers) were re-
cruited, with one excluded for incomplete posttest
data, leaving eleven participants (7 male, 4 female;
5 ABAB, 6 BABA order).

3.4 Materials

Vocabulary Selection Twenty-nine C2-level
English words plus one control word (“happy”)
formed the experimental corpus (see Appendix B
for complete list).

Pretest Tool A GUI pretest presented all 30 vo-
cabulary items (29 C2-level words plus the familiar
word “happy”). Participants selected words they al-
ready knew, which were removed from their individ-
ual learning sets. The inclusion of “happy” served
as an attention check; participants were required to
select this known word to ensure they were reading
instructions carefully. After the pretest, the Experi-
mental Master Controller automatically selected 20
unknown words from each participant’s remaining
vocabulary and randomly assigned 10 to each ex-
perimental condition.

Experimental Master Controller A custom
software tool was developed to automate and stan-
dardize the entire experimental procedure, ensur-
ing identical experimental conditions for all partic-
ipants. The software handled all aspects of the ex-
periment: administering the vocabulary pretest, au-

tomatically generating personalized 20-word learn-
ing sets based on pretest results, loading the cor-
rect word lists into each learning system at the ap-
propriate blocks, enforcing precise timing for all 6-
minute learning blocks and 30-second breaks, trig-
gering RIMMS surveys at predetermined points,
and generating customized post-tests that matched
each participant’s assigned vocabulary.

3.5 Measures

Vocabulary Assessment A multiple-choice
cloze posttest administered 12-24 hours post-
session via Google Forms tested all 20 learned
words. Questions assessed contextual understand-
ing, for example: “The politician tried to the
facts to avoid taking responsibility for the scandal”
with “obfuscate” among the options. This format
assessed declarative vocabulary knowledge through
contextualized recognition rather than productive
use, following validated assessment procedures
established by Read (Read, 2000). The assessment
originally included productive use tasks, but pilot
testing showed this was too lengthy for completion;
the first participant’s data was excluded and the
assessment was simplified to multiple-choice only.
This declarative-only format favors flashcard
methods, which train declarative memory without
conversational overhead, but provided a controlled
comparison point for evaluating the conversational
system’s declarative learning efficiency. The assess-
ments were automatically created from a question
bank of 29 questions to match each participant’s
personalized vocabulary set.

Motivation Assessment The 12-item re-
duced Instructional Materials Motivation Survey
(RIMMS) was used, derived from the full IMMS. It
measured four dimensions (Attention, Relevance,
Confidence, and Satisfaction) using 5-point Likert
scales (Loorbach et al., 2015). Each dimension
was assessed with targeted questions administered
immediately after participants completed their
second exposure to each condition.

3.6 Procedure

The experiment was conducted in-person in a
quiet environment. Upon arrival, participants were
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seated at a computer workstation with the exper-
imental software preloaded. The experimenter re-
mained present throughout the session to ensure
protocol adherence and address technical issues,
but did not interact with participants during learn-
ing blocks.

After obtaining written informed consent, the ex-
perimenter provided standardized instructions ex-
plaining the experimental structure and both learn-
ing systems. For the conversational agent condi-
tion, participants were specifically instructed to
control their learning by verbally requesting either
“I want new words” or “I want to review words” to
switch between vocabulary introduction and prac-
tice modes. Participants were encouraged to ac-
tively direct their learning pace and strategy using
these commands.

The experimental session followed the struc-
ture shown in Figure 3.1. Participants first com-
pleted the vocabulary familiarity pretest, identify-
ing known words from the C2 corpus. The Experi-
mental Master Controller then generated their per-
sonalized 20-word learning set and assigned words
to conditions.

Pretest: Vocabulary Familiarity
↓

Immediate transition
↓

Condition A (6 min)
↓

30-second break
↓

Condition B (6 min)
↓

30-second break
↓

Condition A (6 min)
↓

RIMMS Assessment A
↓

Condition B (6 min)
↓

RIMMS Assessment B
↓

12-24 hour delay
↓

Vocabulary Post-test (at home)

Figure 3.1: Complete experimental flow for
ABAB condition order. BABA participants ex-
perienced the same structure with conditions re-
versed. Total session duration: approximately 35
minutes.

Learning blocks proceeded with automated tran-
sitions and timing enforced by the Master Con-
troller. Visual and auditory signals indicated block
transitions. During CONV blocks, participants en-
gaged with the conversational agent through the
web interface, while Control blocks presented flash-
cards with navigation controls.

After completing all four learning blocks and
both RIMMS assessments, the experimenter de-
briefed participants, reminded them to take the
posttest the next day, and answered any questions.

The vocabulary posttest was automatically sent
via email 12 hours after session completion. Partic-
ipants completed this assessment at home without
supervision, using their personal devices. They had
a 12-hour window to complete the assessment.

3.7 Data Analysis

Performance Analysis Learning effectiveness
was assessed through delayed recall accuracy on
the multiple-choice posttest. Due to small sam-
ple size (n=11), discrete performance data (5% in-
crements resulting from 10 questions per condi-
tion), and non-normal distributions confirmed by
Shapiro-Wilk tests, we employed Wilcoxon signed-
rank tests to compare conditions. Effect sizes were
calculated using r = z/

√
n to quantify the magni-

tude of differences.

Motivation Analysis RIMMS responses were
analyzed using Wilcoxon signed-rank tests for
dimension-level comparisons between conditions.
Additionally, correlation analysis examined rela-
tionships between motivational dimensions and
performance outcomes to identify potential medi-
ating factors.

Statistical Power Post-hoc power analysis re-
vealed 34% power for the observed performance dif-
ference (r = 0.31) and 54% power for motivational
effects (r ≈ 0.40). Approximately 21 participants
would be required to achieve 80% power for detect-
ing moderate effects (r = 0.50). Assuming normal
distribution and using parametric tests with larger
samples, approximately 74 participants would be
needed for 80% power to detect the performance
effect (r = 0.31), and 42 participants for the mo-
tivational effects (r = 0.40). The study was under-
powered to detect small-to-moderate effects.
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4 Results

This section presents experimental findings from
eleven participants who completed the entire train-
ing phase and posttest.

4.1 Participant Characteristics

Eleven participants completed all experimental
tasks, including vocabulary pretest, both learn-
ing sessions in counterbalanced order, RIMMS mo-
tivation assessments, and the 12-24-hour delayed
posttest. Five participants received the ABAB con-
dition order and six received the BABA order. All
participants were C1-C2 level English speakers who
knew fewer than 9 of the 29 target vocabulary
words during pretesting, ensuring sufficient learn-
ing opportunity.

4.2 Learning Performance Out-
comes

Overall Performance Comparison The 12-24
hour delayed vocabulary assessment revealed com-
parable retention patterns between learning con-
ditions. Conversational learning achieved a mean
accuracy of 62.7% (SD = 21.4%, Range: 20%-
90%), while flashcard learning yielded 70.9% (SD
= 17.3%, Range: 30%-100%).
We analyzed the data using non-parametric

statistics due to the small sample size (n=11), dis-
crete performance measurements (5% increments),
and tied values. The Wilcoxon signed-rank test
showed no significant difference between condi-
tions (W = 7.0, p = .281, r = 0.357). This ef-
fect size should be interpreted with caution given
non-significance and low statistical power. These
results indicate comparable learning outcomes be-
tween methods within this pilot study’s constraints
(Figure 4.1).

Individual Learning Patterns Aggregate per-
formance was similar, but individual responses re-
vealed variations in performance patterns between
conditions. Performance differences for individual
participants ranged from -50% to +30%, indicat-
ing different learner responses to each method.
Three participants (P003, P006, P007) achieved

20-30% higher scores with the conversational agent,
while four participants (P004, P008, P009, P010)

Figure 4.1: Learning performance comparison
between conversational AI and flashcard condi-
tions. Statistical analysis revealed no significant
difference between conditions (Wilcoxon W =
7.0, p = .281, r = 0.357).

performed 30-50% better with flashcards, with
P010 achieving perfect recall. The remaining four
participants (P002, P005, P011, P012) demon-
strated similar performance in the 70-80% range
regardless of method. This individual variability
suggests learners may respond differently to each
approach, though the small sample size prevents
claims about stable learner characteristics. With-
out larger samples, these individual differences
cannot be distinguished from random variation,
though the systematic patterns (conversational ad-
vantages for some learners, flashcard advantages for
others) warrant investigation in adequately pow-
ered future studies (Figure 4.2).

4.3 Motivational Response Analysis
(RIMMS)

The Reduced Instructional Materials Motivation
Survey showed differential effects across the four
motivational dimensions. Statistical significance
was not achieved due to sample size constraints.
While effect size estimates were moderate (r ≈
0.40) for attention and satisfaction dimensions,
these should be interpreted as preliminary patterns
rather than reliable effects given the non-significant
results and limited statistical power.
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Figure 4.2: Individual performance differences
between learning conditions. Horizontal bars ex-
tend from center showing the magnitude and
direction of performance differences. Red bars
indicate flashcard advantages, blue bars show
conversational AI advantages. Participants are
sorted by difference magnitude, revealing dis-
tinct individual learning preferences ranging
from -50% to +30%.

Attention and Engagement Conversational
agents had higher attention scores, with a mean of
3.88 (SD = 1.15) compared to 2.85 (SD = 1.13) for
flashcards. Although the Wilcoxon signed-rank test
did not reach significance (W = 17.5, p = .183), the
moderate effect size estimate (r = 0.402) warrants
investigation in adequately powered studies.

Satisfaction and User Experience Conversa-
tional learning produced higher satisfaction ratings
(M = 3.70, SD = 1.00) than flashcard learning (M
= 2.91, SD = 1.15). The difference was not statis-
tically significant (W = 14.0, p = .188), but the
moderate effect size estimate (r = 0.405) warrants
further investigation.

Relevance and Confidence Both methods
were perceived as equally relevant to learning goals
(Conversational: M = 4.03, SD = 0.52; Flash-
card: M = 3.94, SD = 0.55; W = 17.0, p = .961,
r = 0.015). Similarly, learner confidence showed
minimal differences between conditions (Conversa-

tional: M = 3.58, SD = 0.88; Flashcard: M = 3.33,
SD = 0.57; W = 13.0, p = .539, r = 0.168). The non-
significant patterns showed higher attention and
satisfaction for conversational learning without cor-
responding gains in relevance or confidence (Fig-
ure 4.3).

Figure 4.3: RIMMS motivation score distribu-
tions across four dimensions comparing conver-
sational AI and flashcard conditions. Box plots
show medians, quartiles, and outliers for each
condition. Conversational AI showed higher at-
tention and satisfaction scores, while relevance
and confidence showed minimal differences.

5 Discussion

5.1 Key Findings

This pilot study found no significant performance
differences between conversational and flashcard
learning (p = .281), though comparable mean
scores (conversational: 62.7%; flashcard: 70.9%)
demonstrate the system functioned as designed.
The conversation agent, supervisor, and processor
coordinated successfully within the experimental
constraints, establishing technical feasibility. This
architecture may close the adaptivity gap, but ad-
equately powered studies are needed to test its
intended conditions: extended deployment, spaced
repetition, procedural skill development, and re-
trieval strength assessment.

The RIMMS analysis showed no significant dif-
ferences, though moderate effect size estimates (r ≈
0.40) for attention and satisfaction warrant investi-
gation in larger samples. Higher attention and sat-
isfaction without confidence gains aligns with the-
ory suggesting that engaging interaction requires
extended exposure before perceived mastery devel-
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ops, though this remains speculative given non-
significant results.

5.2 Methodological Constraints and
Their Implications

This study’s outcomes were limited by several
methodological constraints that shape interpreta-
tion of the findings.

Statistical Power The most significant limita-
tion was the small sample size (n=11), which pro-
vided insufficient statistical power to detect differ-
ences between conditions. This constraint makes it
difficult to distinguish genuine patterns from indi-
vidual variation and limits generalizability.

Training Asymmetry Participants often
brought years of flashcard experience but received
no prior training for AI conversational learning.
Transfer learning from human conversation skills
may have benefited the conversational condition,
but some participants reported intimidation with
the AI system, potentially offsetting these natural
advantages. This experience gap may have favored
familiar methods over novel approaches.

Single-Session Experimental Constraints
The most severe limitation is conducting a single-
session experiment for an architecture designed for
multi-week deployment. The experimental version
used simplified components for 35-minute sessions,
but the full theoretical advantages require weeks of
interaction to emerge. The 12-minute exposure per
condition is insufficient for vocabulary acquisition
research, as memory consolidation, spaced repeti-
tion benefits, and vocabulary entrenchment require
repeated exposure over extended periods. This
limited time frame tests only immediate familiarity
rather than genuine learning and prevents the
emergence of conversational learning’s theoretical
advantages through social interaction and sys-
tematic spacing. The ABAB design introduced
forgetting intervals, but they were insufficient
for substantial forgetting or proper evaluation of
long-term retention.

Assessment Limitations The assessment ap-
proach primarily tested storage strength rather

than retrieval strength. The New Theory of Dis-
use (Bjork & Bjork, 1992) explains why flash-
card methods excel on declarative recognition tests:
they systematically build storage strength through
repeated exposure and strategic spacing, which
multiple-choice assessments directly measure. Con-
versational practice develops retrieval pathways for
spontaneous vocabulary use in authentic communi-
cation, which require production tasks to properly
evaluate.

Within the tight 6-minute blocks, the two con-
ditions used time differently. Flashcards dedicated
full time to vocabulary exposure. Conversational
learning split time between vocabulary and conver-
sation mechanics (turn-taking, dialogue flow, social
interaction), resulting in less pure vocabulary ex-
posure per word. As described in Section 2.6, the
experimental design used focused, directive agent
instructions to minimize this overhead and main-
tain learning efficiency. Despite these efforts to op-
timize throughput, the time split remained. The
multiple-choice assessment tested only declarative
knowledge, excluding both the retrieval strength
and procedural fluency that conversation develops.
Testing primarily through declarative recognition
while conversation received less vocabulary expo-
sure time fundamentally limited evaluation of con-
versational learning’s theoretical advantages.
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A Code Repositories

The complete source code for this research is available in the following GitHub repositories:

Primary System Implementation: https://github.com/coding-crying/realtime-agents

-language-tutor/tree/main

Neo4j graph database implementation with spaced repetition algorithms and real-time voice agent
integration.

Experimental Version & Data Analysis: https://github.com/coding-crying/S5200954

-Bachelor-Project-/tree/main

Simplified CSV-based implementation used in the experimental evaluation, including data analysis
scripts, statistical computations, and visualization code.

Agent instructions for the experimental system: https://github.com/coding-crying/S5200954

-Bachelor-Project-/blob/main/src/app/agentConfigs/vocabularyInstructor/index.ts

B Experimental Vocabulary List

obfuscate, disparage, perfunctory, precocious, quandary, circumspect, capitulate, vociferous, intractable,
abrogate, abstruse, acumen, admonish, austere, bolster, cacophony, cajole, candor, capricious, concilia-
tory, conundrum, copious, cursory, deleterious, ephemeral, eschew, garrulous, hackneyed
Control word: happy
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C Flashcard Learning Interface

Figure C.1: Flashcard interface showing vocabulary word with definition and contextual examples
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